

Workshop "Rietveld Refinement with Profex"

Lesson 1: Introduction to Powder X-ray Diffraction

Nicola Döbelin, PhD RMS Foundation, Switzerland

March 07-08, 2024 Forschungszentrum Jülich, Germany

Electromagnetic Spectrum

Wavelength λ : 0.01 – 10 nm Energy: 100 eV – 100 keV

Generation of X-radiation: Shoot electrons on matter

Interatomic distances in crystals: typically 0.15 – 0.4 nm

Interference phenomena only for features $\approx \lambda$

X-Ray Tube

3

Generation of X-Rays: Bremsstrahlung (Deceleration Radiation)

Electron is deflected and decelerated by the atomic nucleus. (Inelastic scattering)

Deflected electron emits electromagnetic radiation. Wavelength depends on the loss of energy.

Beneration of X-Rays: Bremsstrahlung (Deceleration Radiation)

RMS

Generation of X-Rays: Characteristic Radiation

Generation of X-Rays: Characteristic Spectrum

Wavelength (nm)

Generation of X-Rays: Summary

- Generated in an Cathod Ray Tube (X-Ray Tube)
- Spectrum contains Bremsstrahlung (continuous) and characteristic radiat the target material
- Tube is characterized by:
 - ✤ Target material (Cu, Co, Cr, Fe, Mo, ...)
 - ✤ Size and shape of the target
 - Acceleration voltage and current

X-rays: Interaction with Matter

- L. Electron oscillates in the electric field
- 2. Emits secondary radiation $(\lambda_s = \lambda_p)$
- B. Φ_p and Φ_s are phase coherent (+180°)

XRD (X-ray diffraction)

Diffraction: Interference

Crystal: Periodic arrangement of atoms/ions/molecules in 3 dimensions.

Each atom becomes a point source of secondary (undirected) radiation

 \rightarrow Interference

Diffraction: Interference

n=2

RMS

Diffraction: Interference

RMS

3-dimensional crystal:

- More complex conditions for positive interference to occur
- ✤ If interference conditions are not fulfilled: Extinction

Diffraction: Lattice Planes and Miller Indices

Definition:

A lattice plane is a plane which intersects atoms of a unit cell across the whole 3-dimensional lattice.

- Each lattice plane generates a diffraction peak.
- The plane's d-spacing determines at what 2θ angle diffraction occurs (Bragg's law)
- Diffraction peaks can be labelled with the plane's Miller indices.

Single crystal:

 Rotate relative to primary beam to bring all lattice planes in diffraction conition: Randomized powder:

 Crystals in all possible orientations are always present:

Powder sample:

One Debye Cone for each lattice plane spacing (d value)

Peak Profile

Peak Profile

Characteristic Radiation Spectrum

Diffraction Pattern of Al₂O₃ (104) Peak

Common Instrument Configurations

https://www.malvernpanalytical.com

Instrument Configurations

Use characteristic radiation with low absorption coefficient (e.g. $MoK\alpha$)

Use characteristic radiation with high absorption coefficient (e.g. $CuK\alpha$)

Irradiated area

Instrument Configurations: Bragg-Brentano Parafocusing Geometry

Instrument Configurations: Bragg-Brentano Parafocusing Geometry

Instrument Configurations: Divergence Slit

Instrument Configurations: Divergence Slit

RMS

Instrument Configurations: Optimum Setup

Instrument Configurations: Setup Checklist

	Optical Element	Ideal setup
Incident beam path	Divergence Slit	Automatic Max irr. length w/o beam overflow
	Soller Slit	Installed Small opening
	Mask	Installed (if available) Max irr. width w/o beam overflow
	Anti-scatter slit	Identical to divergence slit
	Sample	Spinning
racted beam path	Anti-scatter slit	Wide open
	Soller slit	Installed Small opening
	Additional slits	Wide open
	Kβ filter	Installed
Diff	Linear Detector	Maximum PSD opening

Instrument Configurations: Different Geometries

- + Ideal for Rietveld Refinement (phase and structure analysis)
- + High intensity
- + High resolution
- + Good particle statistics
- Large amount of sample material (> 0.5g)

Parallel Beam Reflective

- Not for Rietveld Refinement
- Poor peak resolution
- + For other applications (e.g. GI-XRD)

- 0 Works for Rietveld Refinement (but not ideal)
- + Small amount of sample material
- Poor particle statistics
- Sample-dependent peak profile (due to absorption)

Instrument Configurations: More Information

More detailed discussion and examples in previous workshops:

https://www.profex-xrd.org

Open Source XRD and Rietveld Refinement Current Version: Profex 5.2.5 - Released December 29, 2023 LECTURE HANDOUTS HOME WHAT'S NEW DOWNLOADS FAQ TUTORIALS ~ **USEFUL LINKS** CONTACT SUPPORT June 2018 June 2017 Lesson 1: Rietveld Refinement (4.2 MB) • Lesson 1: X-rays and Diffraction (3.8 MB) • Lesson 2: Diffractometers (2.1 MB) Lesson 2: Instrument Configurations (2.7 MB) • Lesson 3: Instrument Example (1.0 MB) Lesson 3: Sample Preparation (2.7 MB) • Lesson 4: Structure Files (2.3 MB) • Lesson 4: Phase Identification (2.2 MB) Lesson 5: Advanced Refinements and Features (3.2 MB) • Lesson 5: Rietveld Refinement (2.2 MB) Lesson 6: Profex (5.1 MB) • Lesson 7: How-To Session (4.1 MB) • Lesson 8: Structure and Device Files (3.6 MB) Lesson 9: Publishing XRD Data (4.0 MB) Examples 2017-06 (1.0 MB)

