

Workshop "Rietveld Refinement with Profex"

Lesson 4: Introduction to Profex - Phase Identification

Nicola Döbelin RMS Foundation, Switzerland

March 07-08, 2024 Forschungszentrum Jülich, Germany

Developer: License:

Founded in: First public release:

Platforms:

Rietveld Backends:

Nicola Döbelin (private) GPL v2 or later (open source)

2003 (for personal use) 2013 Windows / Linux / OS X (Intel / Silicon)

BGMN (legacy: Fullprof.2k)

Website: Current stable version:

https://www.profex-xrd.org 5.2.7

Profex User Interface

Profex User Interface

Docked

File Edit View Project Run Results Instrument Tor	ols <u>L</u> oc
Projects Name Status	
Projects Name Status Iteration χ ²	
Name Status Iteration X ⁴	
4	
Plot Options	

Floating

🛞 Pro	fex 5	.2.6								
<u>F</u> ile <u>E</u>	dit	View	Projec	t R <u>u</u>	in <u>R</u> e	sults	Instrum	ent	<u>T</u> ools	Loc
	$\overline{}$		\Box_{\times}^{\bullet}	<u>lıt</u>	<u>III</u>		B?	G	\bigtriangledown	TX
Plot Opt	tions						6 X			
									-	
	Pro	ojects							x	
	Nan	ne		Statu	s	≜ lte	eration	χ²		
Refinem										
	_	_	_	_	_	_	_	_	-11	

Stacked

Profex 5.2.6							
<u>File Edit Vie</u>	w Project	R <u>u</u> n	<u>R</u> esults	Instrum	ent	<u>T</u> ools	Loc
		ht hi		₿⁄	G		T,
Projects				6 ×			
Name	Status	↑ Itera	ation	χ²			
				3			
				:			
				:			
		_		:			
Plot Ontions	Projects						
Plot Options	Projects						
Plot Options Refinement Proto	Projects						
Plot Options Refinement Proto	Projects						
Plot Options Refinement Proto	Projects						
Plot Options Refinement Proto	Projects						
Plot Options Refinement Proto	Projects						
Plot Options Refinement Proto	Projects						
Plot Options Refinement Proto	Projects						
Plot Options Refinement Prote	Projects						

To re-arrange:

Grab title bar of dock windows with the mouse and drag.

Profex User Interface

Profex 5.2.6 <u>File E</u>dit <u>V</u>iew Project R<u>u</u>n <u>R</u>esults <u>Instrument Tools Loc</u> Den Text File... Ctrl+O Open Raw Scan File... Ctrl+G 🗑 Open Refinement Project... Ctrl+R Open Project Archive... ht Insert Scans... Ctrl+I Mit. Remove Scan... Ctrl+D Save Save Ctrl+S Save file as... Ctrl+Shift+S Bave all text files in all projects Ctrl+Alt+S **Recent Graph Files** Recent Text Files Print... Ctrl+P Print all Graphs... Ctrl+Shift+P Export all Graphs to SVG... Close Project Ctrl+W Close All Projects Ctrl+Shift+W Import Structure File... Scan Batch Conversion... Save Batch Refinement Script... 🛉 Quit Ctrl+O Refinement Protocol

8

"Help \rightarrow Mouse and Keyboard commands"

Phase Identification

3 Different approaches to phase identification in Profex

- ✤ 1: Double-click strongest peak

 - Can be unreliable
 - Only searches internal database (~1000 phases)
- ✤ 2: Run full-pattern search-match in Profex
 - Slow

 - Only searches internal database (~1000 phases)
- ✤ 3: Run peak detection in Profex, import peak list to other search-match software
 - Can be slow
 - Requires other software
 - ✤ Searches COD or ICDD database (> 400'000 phases)

Phase Identification: Double Click on Strongest Peak

Phase Identification: Double Click on Strongest Peak

Best matching phases are also shown in Search-Match module:

Window

→ Search/Match Phases \rightarrow Results

Refinement Protocol

Clicked at d=2.81534

2: HAP.STR (0.0001)

Best matching phases:

5: Apatite-O.str (0.0001)

RMS

Phase Identification: Double Click on Strongest Peak

Limit the search to a sub-directory to improve the hit rate

Double-click phase identification is often good enough to identify the strongest phase.

If not: Use Search/Match Module (Window \rightarrow Search/Match Phases)

14

Profex 5.2.6	– 🗆 X
<u>F</u> ile <u>E</u> dit <u>V</u> iew Project R <u>u</u> n <u>R</u> esults <u>I</u> nstrument <u>T</u> ools <u>L</u> ocations <u>W</u> indow <u>H</u> elp	
📄 🗔 🗟 🕼 🛄 🚰 🕼 🕼 🦁 🥵 🎯 🖉 👗 ± » 🚳 » ♡ <repo td="" 🕶<=""><td><math display="block"> \hline \textbf{<reference \checkmark="" \qquad="" \textbf{+}="" \textbf{+}<="" \textbf{-}="" math="" stru}=""></reference></math></td></repo>	$ \hline \textbf{$
ex1-file01.raw	Search/Match Phases
RMS Forschung 50% HA ink 1000deg Amy WJ ex1-file01.raw	Phases Restrictions Controls Results
30000 - RMS Forschung 50% HA ink 1000deg Amy WJ	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 H 2 Li Be B C N O F Ne
25000 No Restrictions	3 Na AI Si P S CI Ar 4 K Ca Sc Ti V Cr Fe Co Ni Cu Zn Ga Ge As Se Br Kr 5 Rb Sr Y Zr Nb Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 6 Cs Ba * Lu Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn
20000	7 Fr Ra ^{**} L * La Ce Pr Nd Eu Gd Tb Dy Ho Er Tm Yb A ***Ac Th Pa U Np Pu Bk Cf Change all
	Optional At least one Discard optional
10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00	
Diffraction Angle [°20]	
G:\Auftr_Proj\S-Auftraege\2024\S24_0007 XRD-Workhop FZ Jülich\E 1 Project λ = 1.54060 Å 2θ = 69.241° I = 11390).325 cts d = 1.356 Å

RMS

() F	Profex 5.2.6	j		– 🗆 🗙
<u>F</u> ile	<u>E</u> dit <u>V</u> ie	ew Project R <u>u</u> n <u>R</u> esults <u>I</u> nstrument <u>T</u> ools <u>L</u> ocations <u>W</u> indow <u>H</u> elp		
		🗟 🗋 🚾 🔚 🕼 🏷 🐨 🏶 🖉 👗 🛨 » 🚳 » 🛇 	Reference Stru 💌 🗙 🗄	0.000000
ex1-	-file01.raw		Search/Match Phases	Ø
RMS	S Forschung	g 50% HA ink 1000deg Amy WJ ex1-file01.raw	Phases Restrictions Controls Re	sults
	30000 🗄		Instrument:	
	-	RMS Forschung 50% HA ink 1000deg Amy WJ	Instrument configuration	RMS-D8-ADS-15- 🔻
	F		Characteristic radiation	CU 💌
	25000	IMPORTANT: Adjust controls:	○ Synchrotron radiation	0.0182100 nm
	Ę		Refinement:	
	E	Instrument: RMS-D8-ADS-15-LynxEyeXE	Number of iterations	10 \$
	20000 -	Characteristic Radiation: CU	✓ Minimum angle	10.00
ts	F	Angular range: Include the first peak	V Maximum angle	41.00
coun	E	Include the strongest peaks		40.
sity [15000 -		Set number of background coefficients	10
Inter	F		Unit cell variability	Strict *
	E		Allow anisotropic parameters	
	10000 -		Refine sample height displacement	
	Ę		Sample properties:	
	5000		Crystallinity	High 👻
	0 4	10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00		
		Diffraction Angle [°20]		
G:\A	uftr_Proj\S-	-Auftraege\2024\S24_0007 XRD-Workhop FZ Jülich\Ε 1 Project λ = 1.54060 Å 2θ = 0.000° 1 = 0.00	00 cts d = 0.000 Å	

RMS

Profex 5.2.6	– 🗆 X
<u>File E</u> dit <u>V</u> iew Project R <u>u</u> n <u>R</u> esults <u>I</u> nstrument <u>T</u> ools <u>L</u> ocations <u>W</u> indow <u>H</u> elp	
📄 🗔 🖻 🗋 🔟 🛄 🖶 🕼 🌮 🐨 🏵 🖉 👗 ± » 💿 » ♡ <repo< td=""><td>$(\textbf{Reference Stru} \bullet) \times (\textbf{h}) (\textbf{0.00000} \bullet) \bullet (\textbf{v})$</td></repo<>	$ (\textbf{Reference Stru} \bullet) \times (\textbf{h}) (\textbf{0.00000} \bullet) \bullet (\textbf{v}) $
ex1-file01.raw Run Search-Match	Search/Match Phases
RMS Forschung 50% HA ink 1000deg Amy WJ ex1-file01.rr	aw Phases Restrictions Controls Results
	Instrument:

RMS

Full-Pattern Search/Match Module

Preview: Create Rietveld Refinement Project

Preview: Rietveld Refinement

RMS

Search-Match with 3rd Party Software

Use 3rd-party search/match software to search in large databases:

- 1. Run peak detection in Profex (extremely reliable, but slow)
- 2. Export peak list
- 3. Import peak list in 3rd-party software
- 4. Run search/match on large database

2 different Structure Databases

Crystallography Open Database (COD) http://www.crystallography.net/cod Open access

ICDD PDF-4+ https://www.icdd.com/pdf-4-minerals/ Commercial

Peak Detection

Profex 5.2.7				- 0	×
<u>File Edit View Pro</u>	ject R <u>u</u> n <u>R</u> esults <u>I</u> nstrument <u>T</u> ools <u>L</u> ocations <u>W</u> indow <u>H</u> elp				
	: Lut Lut 🕒 🕼 🕞 🐨 🐨 🚱 🖉 👗 🛨 5	≿,≣, ® ⊳ ⊳ [
ex1-file01.raw			Peak List		ð×
RMS Forschung 50% H	A ink 1000deg Amy WJ	ex1-file01.raw	Phases: All phases	- 🔍 🗋	Y ?
30000	RMS Forschung 50% HA	ink 1000deg Amy WJ	Phase h k I An	igle (°2θ) d (ni	n) Inte
25000	Select Instrument Configuration	× –	1. Open peak list		
20000 - 1 1 1 1 1 1 1 1 1 1 1	Instrument Configuration File RMS-D8-ADS-15-Glass-LynxEyeXE Wavelength		(Window → Pea 2. Run → Peak det 3. Select instrume	ak List) ection nt and	
15000 L 15000 L L L	Characteristic CU Synchrotron 0.070000 nm	• •	wavelength		
10000	ОК	Cancel			
, L.	marine the shall a shall be a below when the	Mun marker kolel			
10.0	0 20.00 30.00 40.00 50.00 60.00	70.00 80.00			
	Diffraction Angle ["20]		•		Þ
Refinement Protocol					0 ×
C:\xrd\S24_0007\Ex1\ex	1-file01.raw 1 Project λ = 1.54060 Å	2θ = 0.000° I = 0.00	0 cts d = 0.000 Å		

23

Peak Detection

Bull 517	
Protex 5.2.7	- U .
<u>File Edit V</u> iew Project R <u>un R</u> esults Instrument <u>T</u> ools <u>L</u> ocations <u>W</u> indow <u>H</u> elp	
ex1-file01.raw	Peak List
RMS Forschung 50% HA ink 1000deg Amy WJ	ex1-file01.raw Phases: All phases 💌 🕲 🍸
	Phase h k l Angle (°20) d (nm
- RMS Forschung 50% HA ink 1000deg Amy W (ex Fine) in RMS Forschung 50% HA ink 1000deg Amy WJ peak data ()	0 - 11 RMS Forschung 0 0 0 25.8696 0.3
	12 RMS Forschung 0 0 0 26.6806 0.3
	13 RMS Forschung 0 0 0 27.6079 0.3
4000	14 RMS Forschung 0 0 0 27.9768 0.3
Add missed peaks by	15 RMS Forschung 0 0 0 28.1186 0.3
and a second se	16 RMS Forschung 0 0 0 28.9337 0.3
	17 RMS Forschung 0 0 0 29.8178 0.2
2000 -	18 RMS Forschung 0 0 0 31.2298 0.2
	19 RMS Forschung 0 0 0 31.7733 0.2
	20 RMS Forschung 0 0 0 32.1863 0.2
Emmand Marken Marken	21 RMS Forschung 0 0 0 32.9108 0.2
	22 RMS Forschung 0 0 0 34.0566 0.2
30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50 3 Diffraction Angle [*20]	23 RMS Forschung 0 0 0 34.5837 0.2
Refinement Protocol	
terminating fast startup peak scanning	
closing iteration	
2theta=31.229806 I=2035.453764 d=2.861753	
C:\xrd\S24 0007\Ex1\ex1-file01.raw 1 Project λ = 1.54060 Å 2θ = 0.000°	l = 0.000 cts d = 0.000 Å

24

Export Peak List

Profex 5.2.7		– 🗆 X
<u>F</u> ile <u>E</u> dit <u>V</u> ie	w Project R <u>u</u> n <u>R</u> esults <u>I</u> nstrument <u>T</u> ools <u>L</u> ocations <u>W</u> indow <u>H</u> elp	
	ラ [> [⊥ [⊥ 🕒 🕼 🕼 🏶 🕼 🖉 🎽 🛓 ± ☆ 🛒 💿 ▷ ▷ 🗆 🗇 🔛 🔍	
ex1-file01.raw	Peak List	ØX
RMS Forschung	50% HA_ink 1000deo Amy WI Phases: All phases: All phases:	s 🗸 🖓 🍸
E E	Save hkl list to CSV X	Apply filters to other projects
6000	$\leftarrow \rightarrow \checkmark \uparrow \bigcirc \ll xrd \rightarrow S24\ 0007 \rightarrow Ex1 \qquad \checkmark \textcircled{0}$ Ex1 durchsuchen	h k I Angle (°24 📝 Save peak data to file
L F		0 0 0 25.86 — Remove selected peak
5000	Organisieren 🔻 Neuer Ordner	0 0 0 26.68 💭 Reload data from disk
F	Es wurden keine Suchergebnisse gefunden.	0 0 0 27.60 Elear selection
4000 E		0 0 0 27.9768 0.318
4000 -		0 0 0 28 1186 0 317
<u> </u>	******	
1.5 3000 -	Select file format d values (* dif * DIE)	0 0 0 28.9337 0.308
트	Select file format "u values (.uli .bir)	0 0 0 29.8178 0.299
2000		0 0 0 31.2298 0.286
E		0 0 0 31.7733 0.281.
1000		0 0 0 32.1863 0.277
		0 0 0 32 9108 0.271
	teiname: ex1-file01.dif	
0 "	30.50 Dateityp: d values (*.dif *.DIF)	0 0 0 34.0000 0.203
		0 0 0 34.5837 0.259
D-Ground Deat	∧ Ordner ausblenden <u>Speichern</u> Abbrechen	
Q=956.81		
terminating fast	startup peak scanning	
Peak detection	ompleted in 00:00:11.907 hh:mm:ss.ms	
2theta=31.22980	6 l=2035.453764 d=2.861753	
C:\xrd\S24_0007	\Ex1\ex1-file01.raw 1 Project λ = 1.54060 Å 2θ = 34.354° 1 = 3697.741 cts d = 2	2.608 Å

Importing Peak List in QualX2

Importing Peak List in QualX2

Search/Match in QualX2

Х 🛩 QualX - [G:\Auftr_Proj\S-Auftraege\2024\S24_0007 XRD-Workhop FZ Jülich\Examples\Windows\Example 1 - Basic refinement\ex1-file01.xy] _ File View Pattern Search Help 2 으 🛆 👗 주 쀼 🙈 🗅 🦢 😸 🙀 👼 Search-Match Search-Match Options 5.4 Exp-2th Exp-I 900 Accept selected phase 10.84 68.0 Experimental pattern (ex1-file01.xy) 13.71 22.3 Remove selected phase(s) Del —[00-901-1095] Apatite-(CaOH) 800-40.7 16.84 Show card of selected phase 23.2 17.09 700-Modify scale 30.2 18.83 Change colour 21.77 57.0 600-Find in the results list Ctrl+F 21.98 16.4 500-Sort phases > 22.86 56.0 29.9 25.36 Restraints 400-180.5 25.84 Get Entry number 25.87 277.2 300-Database Indexation 26.68 13.3 200-27.61 13.3 27.97 28.9 100-28.12 85.5 28.94 149.5 29.82 13.8 Peaks 31.23 49.4 00-901-1095 31.77 863.4 32.18 500.0 32.91 532.4 ¥ 5 10 15 20 25 30 35 40-2-theta 45 50 55 60 65 70 75 < > 742.27 0.632 139.556 ZOOM IN Counts: 2theta: d: n: No. QM CARD Compound Name Chemical Formula Peakpos. Intensity Scale FoM S-Quant. ^ \mathbf{x} C 00-901-1095 [Apatite-(CaOH)] Ca5 H 013 P3 0.89406 0.64815 0.96653 0.88957 1.615 - 1 C 00-901-1091 [Hydroxylapatite] Ca5 H 013 P3 0.89406 0.64815 0.96653 0.88957 1.615 r 00-721-7894 Calcium phosphate(V) hydroxide (10.08/5.9/2.32) Ca10.084 (P 04)5.94 (0 H)3.39 0.91992 0.59502 0.97561 0.88449 1.514 C 6 C. 00-900-3548 [Hydroxylapatite] Ca5 H1.44 013.012 P2.928 0.90556 0.97313 0.88318 1.586 ╬ C. 00-900-3552 [Carbonate-hydroxylapatite] Ca5 H1.44 013.012 P2.928 0.90556 0.97313 0.88318 1.586 7 C 00-901-0052 [Apatite-(CaOH)] Ca5 H2 013 P3 0.91992 0.58478 0.97094 0.88254 1.520 • C 00-900-2216 [Hydroxylapatite] Ca5 H2 013 P3 0.91992 0.58478 0.97094 0.88254 1.520 C 00-210-5284 3(04 P),0.18(Cl),0.82(0H),5(Ca) 0.90261 0.60118 0.95816 0.88235 1.577 C 00-152-1038 Ca9.692 Na0.04 Sm0.271 (P0.963 Si0.037 04)6 (0 H)2 H Ca4.85 Na0.02 013 P2.89 Si0.11 Sm0.14 0.92323 0.57467 0.98415 0.88130 1.657 00-152-1037 Ca9.616 Na0.064 Nd0.317 (P0.952 Si0.048 O4)6 (O H)2 H Ca4.81 Na0.03 Nd0.16 O13 P2.86 Si0.14 0.92289 0.57199 0.98876 0.88073 1.680 C × - . - - - - . . . - - - - - . - -Matched POW_CC 2674 Selected Card 00-901-1095 Ca5 H O13 P3

Importing Peak List in Match!

Importing Peak List in Match!

♦ Match!*		- 🗆 X
Eile Edit View Pater Peaks Search Entries Quantify Database Tools		♦ Set Experimental Details
Peak searching Irel. 1000 950 <	 ♦ IN IN IN INCLUSE IN INTERPORT IN INTERPORT IN INTERPORT IN INTERPORT INTERPORT INTERPORT<	Please select the radiation type and wavelength applied in the diffraction experiment 'ex1-file01.dif' Iype of radiation Iype of radiation Iype of radiation Iype of radiation Ivacuum Ivacuum Ivacuum Mavelength 1.5418740 A (Cu-Ka) Abscissa (value range: 1.22-8.15) Itheta [°] 2theta [°] Itheta [°] OK
200 150 100 50 Cu-Ka (1.541874 A) Please run raw data processing (e.g. press <ctrl+a>)!</ctrl+a>	60.00 Dateiname:	Peak list (2 columns: 2theta/d l; ~ Õffnen Abbrechen st to now.
Import peak data from a 2-column or Stoe PKS file, and add them to the current experimental pa	ttern 2th: 67.46 d: 1.3884 I	rel.: 510.39 480309 entries PDF-4+ 2023

Search/Match in Match!

🔶 Match	i*									-		×
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>P</u> attern Pe <u>a</u> ks	<u>Search Entries Quantify Da</u>	tabase <u>T</u> ools <u>O</u> ptions	<u>H</u> elp								
🗋 🗋 💕	🕒 😑 🛦 🌋 🚣	ᆇ 🔨 🚣 📠 [*) 🔺 🥂	N 🗛 🚸 🚸 🊸	🎇 🐼 FP	a 💰 🔳 🔊	- (°	- 🗟 🔋 🛠 - 🤅	😔 🔀 🗸	Q			
l rel. 1000						+	sition Structure Prop	perties	Peaks/Ranges	References	Subfiles*	
900	Calc. (exp. pe Background 101-089-6437	ng 50% HA ink 10000eg Amy WJ eaks) (Rp=68.8 %) 11 Ca10.042 (P O4)5.952 (O H)2.2	92 Calcium Phosphate Hvdro	xide Hvdroxvlapat	ite. svn (93.0%)		Subfiles or compound classe	es:	D patterns	Organic		
800	[04-009-2106	5] Ca2.59 Mg0.41 (P O4)2 Calcium I	lagnesium Phosphate Whitlo	ckite, syn (7.0%)			Ceramic	v Ino Inte	rganic ercalate	Pearson's Pharmace	uticals	a
700							Common phases	Ion	i c conductors rck	Pigments Polymers		
600 -			tobooo vooovd				CSD patterns	Mei	tals and alloys erals	Supercond Zeolites	ucting mat.	
500		ICDD PDF-4+ ua	labase record	5:			Explosive		S T natterns	Clear all	Select a	all
400 -		01-089-6437 (H	ydroxyapatite)			Database		n patterns			_
300 - ···		04-009-2106 (W	/hitlockite)				V PDF	co				
200							User database	PC(CRYSTMET	Own	data
100		1 d de de stat			, h, h, kele		AMCSD			CSD PDF	Clear	All
							Preset: None / new set	:	•	Save De	lete R	eset
Cu-Ka (1.54	10.00 20.00 41874 A)	30.00 40.00	50.00	60.00	70.00 80.00 2theta	` \	🗸 Restraints (426647)	+ Add (3	36) 🗄 Peak	list 📄 Data	sheet	FF 🚽 J
Color Qual	I. Entry Formula	Cryst. Candidate phase	P(2theta) P(1/10)	l scale fct.	I/Ic FoM ▼	^ (Color Entry F 01-089-6437 Ca10	Formula 0.042 (P.	Cryst. Mat	ched phase 🔻	Quant.(9 93.0	%)
D	00-003-0713 Ca3 (P O4)2	2 X Calcium Phosphate (Whi	0.0000 0.0000	1.0000	0.0000		04-009-2106 Ca2.	.59 Mg0	H Calciun	n Magnesium P	7.0	
D	00-006-0426 Ca3 (PO4)2	2 X Calcium Phosphate (Whi	0.0000 0.0000	1.0000	0.0000							
I	00-009-0169 Ca3(PO4)2	2 H Calcium Phosphate (Whi	0.0000 0.0000	1.0000	0.0000							
В	00-013-0404 (Ca,Mg)	H Calcium Magnesium Phos	0.0000 0.0000	1.0000	0.0000							
I	00-015-0389 H Ca8 Fe P	M Hydrogen Calcium Iron	0.0000 0.0000	1.0000	0.0000							
D	00-042-0577 Ca18 Mn2	H Calcium Manganese Hyd	0.0000 0.0000	1.0000	0.0000							
D	00-042-0578 Ca18 Mg2	H Calcium Magnesium Hydr	0.0000 0.0000	1.0000	0.0000	-						
RMS Founda	ation, Site License						2th: 4.00 d: 2	22.0902	I rel.: 1000.	00 36 entries	PDF-4+ 20	023

RMS

Matches in Match!

Importing new Structures to Profex

Importing from COD:

- Needs COD installed in Profex
- Needs internet connection

Importing from ICDD PDF-4+

- Needs valid license for PDF-4+
- Export structure from PDF-4+ as XML file

Note: ICDD **PDF-2** does not contain crystal structure information.

ightarrow Can't be used for Rietveld Refinement

	<u>E</u> dit <u>V</u> iew Project R <u>u</u> n <u>R</u> esults	Instrument Tools	<u>L</u> ocations <u>W</u> indow <u>H</u> elp	
	<u>O</u> pen Text File	Ctrl+O		
	Ope <u>n</u> Raw Scan File	Ctrl+G		
	Open Refinement Project	Ctrl+R		
1	Open Project Arc <u>h</u> ive			
<u>lut</u>	Insert Scans	Ctrl+I		
J.T.	<u>R</u> emove Scan	Ctrl+D		
	Save	Ctrl+S	47	
¢?	Save <u>f</u> ile as	Ctrl+Shift+S		
6	Save all text files in all projects	Ctrl+Alt+S		
	Recent Graph Files	•		
	Recent Text Files	•		
÷	Print	Ctrl+P		
÷	Print all <u>G</u> raphs	Ctrl+Shift+P		
0 	Export all Graphs to SVG			
R	<u>C</u> lose Project	Ctrl+W	Profex 5.2	
	Close All Projects	Ctrl+Shift+W		
	Import Structure File		www.protex-xrd.org	
	Scan <u>B</u> atch Conversion			
	Save Batch Refinement Script			
G	Quit	Ctrl+Q		

RMS

4

openiocarine	1	COD Structure Retrie	val			
Retrieve from COD Database		Structure			Reference	
		COD ID:			Title:	
		Mineral Name:			Authors:	
		Number of Elements:	min	max	Journal:	
		Elements:	<include></include>	<exclude></exclude>	Volume:	
	8	Space Group:	<hermann-maugui< td=""><td>n symbol></td><td>Year:</td><td>oldest 🌲 most rece</td></hermann-maugui<>	n symbol>	Year:	oldest 🌲 most rece
		Temperature:	Restrict to:	Room temperature	▼ DOI:	<10.1107/S2052520616015675>
		<u>S</u> earch		Data	abase connected	
		COD ID	Mineral Fo	ormula Space G	roup Year	Bibliography
○ ▷ I> Messages hkl Plot						
						UN

OD Structure Retrieval						
Structure			Reference			
COD ID:			Title:			
Mineral Name:	Apatite	Apatite				
Number of Elements:	4	\$ 4 \$	Journal:			
Elements:	Ca H P O	<exclude></exclude>	Volume:			
Space Group: <pre></pre> <pre></pre> <pre>Space Group:</pre>		ıguin symbol>	Year:	oldest	most recent	
Temperature:	✓ Restrict to:	Room temperature 🔻	DOI:	<10.1107/S205252	20616015675>	
Search		Datab	ase connected		\mathbf{X}	
COD ID	Mineral	Formula	Space Grou	ip Year	Bibliography	
1 🗌 1011242 H	Hydroxylapatite	Ca5 H O13 P3	P 63/m	1932	Hendricks, S B;	
2 9001233 H	Hydroxylapatite	Ca5 H O13P3	P 63/m	1989	Hughes J M;	
3 9002213 H	Hydroxylapatite	Ca5 H O13 P3	P 63/m	1999	Wilson R M; Fili	
4 9002214 H	Hydroxylapatite	Ca5 H2 O13 P3	P 63/m	1999	Wilson, R. M.;	
5 9002215 H	Hydroxylapatite	Ca5 H2 O13 P3	P 63/m	1999	Wilson, R. M.;	
6 9002216 H	Hydroxylapatite	Ca5 H2 O13 P3	P 63/m	1999	Wilson, R. M.; 👻	
E S Cancel						

8	🔅 COD Structure Retri	eval								×
	Structure				Reference					
Γ	COD ID: 9011095		Title:							
	Mineral Name:				Authors:					
Ι	Number of Elements	: min	max	*	Journal:					
	Elements:	<include></include>	<exclude></exclude>		Volume:					
	Space Group:	<hermann-ma< th=""><th colspan="2">ermann-Mauguin symbol></th><th colspan="2">Year: oldest</th><th>dest</th><th colspan="2">est 🌲 most recent</th><th>\$</th></hermann-ma<>	ermann-Mauguin symbol>		Year: oldest		dest	est 🌲 most recent		\$
	Temperature:	Restrict to:	Room temp	perature 🔻	DOI:	<1	0.1107/S205	2520616	5015675>	
	<u>S</u> earch			Database	connected					×
	COD ID	Mineral	Formula	Space Grou	p Ye	ar	Bibliogr	aphy		
	1 9011095 A	patite-(CaOH)	Ca5 H O13 P3	P 63/m	1969		Sudarsana	n, K.;		
								OK	Can	cel

- 1. Enter mineral properties or COD ID
- 2. Click «Search»
- 3. Check the phases you want to download
- 4. Click «OK» to download

		COD ID	Mineral	Formula	Space Group	Year	Bibliography	-
	13	9011092	Hydroxylapatite	Ca5 H O13 P3	P 63/m	1969	Sudarsanan, K.;	
	14	9011093	Hydroxylapatite	Ca5 H O13 P3	P 63/m	1969	Sudarsanan, K.;	
	15	9011094	Hydroxylapatite	Ca5 H O13 P3	P 63/m	1969	Sudarsanan, K.;	
	16	✓ 9011095	Apatite-(CaOH)	Ca5 H O13 P3	P 63/m	1969	Sudarsanan, K.;	
	17	9011096	Apatite-(CaOH)	Ca5 H O13 P3	P 63/m	1969	Sudarsanan, K.;	
	18	9011097	Apatite-(CaOH)	Ca5 H O13 P3	P 63/m	1969	Sudarsanan, K.;	
	1						OK Cancel	

Stick pattern and calculated density for verification

If conversion fails due to corrupted CIF file, no stick pattern is shown and errors are reported in «Messages» protocol.

Messages	hkl Plot		
Filtering by s	ymmetry op	ators:	▲
> No mate	hing setting	ound. Skipping this test.	
Running BG	MN to verify	e structure and calculate hkl line positions:	
8 atoms four	nd in spacegi	up no -1 setting no -1	
Line 9 (CA):	No Wyckoff :	mbol found	
Line 10 (CA)	No Wyckoff	ymbol found	•
V	1 🔛 Cu	α1 💌	
			R/MJ

Saving STR Files

Saving STR Files

Exporting XML from PDF-4+

Image: Search History Results Image: Search Hist

😽 Select PDF Cards	×
PDF Number 👻 04-009-2106	Sort by Most Recent 👻
Clear List	Open PDF Card Cancel

PDF-4+ 2023 × _ File Window Help Ç ¥ Ţ Ø 5 Open PDF Cards Preferences Search History Results Composition Graph SIeve+ Microanalysis Ca2.59 Mg0.41 (P O4)2 - 04-009-2106 File Plots 🚽 Export 🗸 📗 Temperature Series 🛛 🐨 2D Structure 📓 SAED Pattern 👻 🎢 Simulated Profile Toolbox 🗱 3D Structure 🛛 🗱 EBSD Pattern 👻 Raw Diffraction Data 踚 Print Ring Pattern Property Sheet 🗶 Bonds 🔻 X-ray Diffraction Simulated Profile (Calc) 1.000 Wavelength: Cu Ko1 1.54056 Å 900 \sim Raw Diffraction Data 800 Neutron Diffraction Fixed Slit Intensity 🗸 🗸 700 Electron Diffraction 600 Intensity d (Å) * 20 (°) I h k 500 0 1 2 10.965 8.06234 93 ~ 400 6.44867 214 13.720 1 0 4 300 14.266 6.20318 39 0 0 6 17.155 5.16465 356 1 1 0 200 18.594 4.76801 19 1 1 3 100 20.404 0 2 4.34887 61 2 0 21.511 4.12753 16 0 1 8 22.032 4.03117 0 90 2 4 7 22.381 3.96906 1 1 6 5 10 15 20 25 30 35 50 55 60 65 70 75 8 40 45 3.43634 25.907 327 1 0 10 20 (°) PDF Status: Primary | Quality Mark: O Indexed Environment: Ambient Temperature: 298.0 K (Assigned by ICDD editor) Pressure: -Experimental Phase: Physical Chemical Formula: Ca2.59 Mg0.41 (PO4)2 Structural Formula: Crystal Empirical Formula: Ca2.59 Mg0.41 O8 P2 Structure Refined Formula: Ca2.581 Mg0.419 O8 P2 Classifications Weight %: Ca34.18 Mg3.28 O42.14 P20.40 Ca19.92 Mg3.15 O61.54 P15.38 Atomic %: Cross-references Compound Name: Calcium Magnesium Phosphate References Whitlockite, syn | IMA No: -Mineral Name: Comments Zeolite Name: Alternate Name: CAS Number: 09/01/2006 Entry Date: Modification Date: 09/01/2020 | Modifications: Update Ca2.59 Mg0.41 (P O4 ...

Exporting XML from PDF-4+ / Importing in Profex

In PDF-4+:

On the PDF card, click Export \rightarrow To ICDD XML File

ſ	🗟 Ca2.59 Mg0.41 (P O4)2 - 04-009-2106	
l	File Plots	
	🛃 Export 🗸 📗 Temperature Series 🛛 🕸 2D Structure	SAED Pattern 🔻 🎢 Simulated Profile
l	To Crystallographic Information File (*.cif)	EBSD Pattern 👻 📰 Raw Diffraction Data
L	To Bruker TOPAS File (*.str)	💹 Ring Pattern
	To ICDD XML File (*.xml)	ed Profile (Calc) 1,000
	Wavelength: Cu Ko1 1.54056 Å 🗸 Raw Di	ffraction Data 900

In Profex:

File \rightarrow Import Structure Files \rightarrow Open local file Set file format to "ICDD XML Files"

import Structure Files		
🗐 🕞 🔀 🕅 STR File Source File		
Open local file 1		
Retrieve from COD Database		
Enter COD IDs		
Open crystal structure data files		×
\leftarrow \rightarrow \checkmark \Uparrow \Rightarrow Dieser PC \Rightarrow Dokumente \Rightarrow \checkmark \circlearrowright	Dokumente durchsu	chen 🔎
Organisieren 🔻 Neuer Ordner		• 🔳 🕜
Name	Änderungsdatum	Тур 🔨
C PDF Card - 04-009-2106.xml	20.02.2024 16:17	Micro
C PDF Card - 04-002-8311.xml	14.11.2023 09:31	Micro
C PDF Card - 00-044-0161.xml	14.11.2023 09:27	Micro
C PDF Card - 00-050-1171.xml	14.11.2023 09:25	Micro
C PDF Card - 01-077-0724.xml	14.11.2023 09:22	Micro
C PDF Card - 04-002-8258.xml	14.11.2023 09:10	Micro
C PDF Card - 04-001-9353.xml	14.11.2023 09:07	Micro
C PDF Card - 00-024-1406.xml	14.11.2023 09:06	Micro
C PDF Card - 04-023-5193.xml	14.11.2023 08:51	Micro
C PDF Card - 01-079-2435.xml	14.11.2023 08:48	Micro
C PDF Card - 00-029-1389.xml	14.11.2023 08:45	Micro
	10 11 0000 16.00	× * *
Dateiname: PDF Card - 04-009-2106.xml 🗸	ICDD XML Files (*.x	ml *.XML) 🗸 🗸
	Ö <u>f</u> fnen	Abbrechen

Saving STR Files

- 1. Check the stick pattern and density for plausibility
- 2. Save the STR file
- 3. Close the import dialog

Phase Identification: Summary

- All phases identified
 - ✤ double-click
 - ✤ search-match module
 - ✤ 3rd party software
- Missing structure files retrieved from COD or PDF-4+ (or other source)
- Retrieved structure files converted from CIF/XML format to STR
- Next: Rietveld refinement